

NICOLAS KORBOULEWSKY 1

Table des matières

1. History of Application Paradigms ...5

1.1. Text-Based Interfaces: Teletype and Command Line ..5

1.2. Graphical User Interface (GUI): The "Point-and-Click" Revolution5

1.3. Touch Interfaces: The Mobile and Gesture Era ...6

1.4. Emergence of AI: Virtual Assistants and Chatbots...6

2. Evolution Towards a Neuro-Symbolic Paradigm ..8

2.1. Limitations of Traditional Application Architectures ..8

2.2. Integration of Semantic Understanding and Computation ...8

2.3. Shift from Pattern Recognition to Goal-Oriented Systems ..9

3. Necessity of Homoiconicity and the VVL Language ... 11

3.1. From Natural Language to Executable Code ... 11

3.2. The Importance of Homoiconicity in AI Systems ... 12

4. Defining AI Apps within the New Paradigm..................................... Erreur ! Signet non défini.

4.1. Characteristics of Neuro-Symbolic AI Apps Erreur ! Signet non défini.

4.2. Fusion of AI and UI into a Single Computational Model Erreur ! Signet non défini.

4.3. Real-Time Bidirectional Interaction: Breaking the Visual-Conversational Barrier Erreur !
Signet non défini.

4.4. Add determinism to an AI application need a Graph. Erreur ! Signet non défini.

4.5. Ontological DB is needed for an AI Apps Erreur ! Signet non défini.

5. Introduction to the VVL Language ... Erreur ! Signet non défini.

5.1. Fundamental Concepts and Syntax .. Erreur ! Signet non défini.

FUNDAMENTAL CONCEPTS ... Erreur ! Signet non défini.

5.2. Operations, Functions, and Error Handling.............................. Erreur ! Signet non défini.

TESTS OPERATOR .. Erreur ! Signet non défini.

ADVANCED VARIABLE DECLARATION Erreur ! Signet non défini.

OPERATIONS ... Erreur ! Signet non défini.

FUNCTIONS... Erreur ! Signet non défini.

ERROR HANDLING AND FUNCTION EXECUTION Erreur ! Signet non défini.

5.3. Meta-Programming and Advanced VVL Features...................... Erreur ! Signet non défini.

BASIC OPERTATIONS AS LIST .. Erreur ! Signet non défini.

CONTROL... Erreur ! Signet non défini.

DIVERS .. Erreur ! Signet non défini.

ERRORS ... Erreur ! Signet non défini.

NICOLAS KORBOULEWSKY 2

FILES OPERATION .. Erreur ! Signet non défini.

IMAGES .. Erreur ! Signet non défini.

JSON .. Erreur ! Signet non défini.

LIST ... Erreur ! Signet non défini.

META PROGRAMATION ... Erreur ! Signet non défini.

STRING .. Erreur ! Signet non défini.

SUB GRAPH.. Erreur ! Signet non défini.

TYPES .. Erreur ! Signet non défini.

WHOLE/NETWORK ... Erreur ! Signet non défini.

XML ... Erreur ! Signet non défini.

5.4. VVL used for dialog with the user .. Erreur ! Signet non défini.

LIST OF THE DIALOG COMMANDS.. Erreur ! Signet non défini.

6. Components of AI Applications (Enhanced MVC Model) Erreur ! Signet non défini.

6.1. The View Layer: VAILS.vapp (VDOM and E²VDOM) Erreur ! Signet non défini.

The structure between TLCs (Top Level Container) Erreur ! Signet non défini.

LISTE DES COMPOSANTS VDOM UTILISANT LA STRUCTURE Erreur ! Signet non défini.

VDOM Components of terminal type Erreur ! Signet non défini.

VDOM Class : Building new VDOM components by composing others VDOM

Components... Erreur ! Signet non défini.

Application VDOM .. Erreur ! Signet non défini.

Structure .. Erreur ! Signet non défini.

Langages ... Erreur ! Signet non défini.

6.1.1. Real-Time Interface Generation Erreur ! Signet non défini.

6.1.2. User Interaction and Context Management Erreur ! Signet non défini.

6.1.3. Practical UI Integration Examples Erreur ! Signet non défini.

6.2. The Model Layer: VAILS.knowledge .. Erreur ! Signet non défini.

6.2.1. Knowledge Representation and Ontologies Erreur ! Signet non défini.

6.2.2. Prolog-based Logical Reasoning Erreur ! Signet non défini.

6.2.3. Semantic Knowledge Base (SKB) Implementation Erreur ! Signet non défini.

6.3. The Controller Layer: VAILS.core .. Erreur ! Signet non défini.

6.3.1. Graph-Oriented Control Flow .. Erreur ! Signet non défini.

6.3.2. Types of Nodes: Normal, Subgraph, and Command Nodes. Erreur ! Signet non défini.

6.3.3. Deterministic and Goal-Oriented AI Processing Erreur ! Signet non défini.

6.4. Interaction with AI Agents: VAILS.distributed Erreur ! Signet non défini.

6.4.1. Concurrent Programming Principles Erreur ! Signet non défini.

6.4.2. Multi-Agent Distributed Computing Erreur ! Signet non défini.

NICOLAS KORBOULEWSKY 3

6.4.3. State Management (Ready, Blocked, Halted, Killed) Erreur ! Signet non défini.

6.5. Computational Layer: VAILS.compute Erreur ! Signet non défini.

6.5.1. Stack-Based Array Programming Erreur ! Signet non défini.

6.5.2. Efficient Computation Techniques with Minimal Tokens Erreur ! Signet non défini.

6.5.3. Practical Use-Cases and Examples Erreur ! Signet non défini.

7. Practical Examples and Case Studies ... Erreur ! Signet non défini.

7.1. Case Study: Orientis – AI for Financial Data Analysis Erreur ! Signet non défini.

7.2. Case Study: Flowfusion – Business Process Automation Erreur ! Signet non défini.

7.3. Case Study: SmartCV – AI-Driven CV Analysis Erreur ! Signet non défini.

7.4. Case Study: Quotix – Natural Language Quotations Erreur ! Signet non défini.

7.5. Case Study: FirstEstate AI – Real Estate Information Management Erreur ! Signet non
défini.

8. Conclusion and Future Perspectives... Erreur ! Signet non défini.

8.1. Reflections on the Neuro-Symbolic Paradigm Erreur ! Signet non défini.

8.2. Future Trends in AI Application Development Erreur ! Signet non défini.

8.3. Potential Improvements and Research Directions.................... Erreur ! Signet non défini.

NICOLAS KORBOULEWSKY 4

PREFACE

In the early days of AI integration into applications, Foundation Models revolutionized the
landscape. They allowed engineers to enhance traditional software with powerful natural
language capabilities, democratizing access to intelligent behavior through techniques like
prompt engineering, retrieval-augmented generation (RAG), and fine-tuning.
These methods, however, remained fundamentally additive: they treated AI as a service
attached to conventional application architectures.

AI Paradigm proposes a radical departure from this model.

Rather than appending intelligence onto classical systems, we explore a path where intelligence
becomes the system itself.

Through the development of the VAILS framework and the VVL neuro-symbolic language, we
aim to build applications that natively embody AI principles:

• Deterministic and goal-driven behaviors.

• Fusion of semantic reasoning and real-time user interaction.

• Homoiconic structures enabling dynamic code generation and execution.

This book does not merely describe how to leverage external models.
It lays the foundation for creating a new class of applications:

Applications whose logic, interface, and intelligence are one and the same.

Welcome to a new frontier where apps think, reason, and adapt — not because a large model is
attached to them, but because they are built to be intelligent by design.

NICOLAS KORBOULEWSKY 5

1. History of Application Paradigms
1.1. Text-Based Interfaces: Teletype and Command Line

The earliest human-computer
interactions relied heavily on text-based
interfaces, beginning with the Teletype.
This rudimentary form of communication
allowed users to interact with computing
systems through typed textual
commands, marking the initial
democratization of computing by
providing a direct and standardized
method of input. The command line
interface (CLI) subsequently evolved from
these early text-based mechanisms,

significantly enhancing real-time interaction capabilities. Unlike the Teletype's linear and batch-
oriented nature, the command line allowed immediate, interactive dialogue between users and
machines, transforming computing into a more responsive and user-driven experience. Although
visually simplistic, these early text-based interfaces established fundamental principles of
computing interaction, forming the cornerstone for future interface paradigms and setting the
stage for more sophisticated graphical and gesture-based systems to come.

1.2. Graphical User Interface (GUI): The "Point-and-Click" Revolution
The introduction of the Graphical User Interface
(GUI) marked a radical shift in the way humans
interact with computers. Replacing cryptic
command lines with visual elements such as
windows, icons, menus, and pointers, the GUI
opened the door to a much wider audience.

For the first time, users could manipulate digital
content using a mouse rather than memorizing
complex command syntax. This visual, intuitive
approach made computing more accessible,
even for those with no technical background.

At the heart of this revolution was the “point-
and-click” metaphor. A simple gesture—
moving a pointer and clicking—could now trigger
powerful actions: opening a file, launching a program, or editing a document.

Popularized by systems like the Apple Macintosh and later Microsoft Windows, the GUI became
the default paradigm for desktop computing for decades. It empowered millions of users and
paved the way for creative tools, office software, and interactive media.

NICOLAS KORBOULEWSKY 6

Beyond usability, the GUI also redefined aesthetics in software. Design, layout, and visual
feedback became essential aspects of user experience. The screen was no longer just a
terminal—it became a workspace, a canvas, a playground.

In summary, the GUI didn't just simplify interaction. It transformed computing into a visual,
human-centric experience, setting the stage for the next wave of interactive technologies.

1.3. Touch Interfaces: The Mobile and Gesture Era
The arrival of touch interfaces transformed the way
we interact with digital devices. With a simple swipe,
tap, or pinch, users could now manipulate content
directly on the screen—without the need for a
mouse or keyboard. This shift brought technology
closer to human intuition.

The revolution began with smartphones and tablets,
spearheaded by iconic devices like the iPhone and
iPad. These tools introduced multitouch gestures
that felt natural, fluid, and even playful. Navigation
became physical: we scroll with our fingers, zoom
with two, and drag-and-drop with a simple motion.

Touch interfaces also changed the design of
software. Buttons became larger, interfaces more minimalistic, and feedback more tactile. The
user experience became centered around immediacy and accessibility.

Beyond mobile, touch extended to interactive kiosks, smart appliances, and touchscreen
laptops. Gestural input—like swiping to unlock or dragging to rearrange—became second nature
to users of all ages.

This new era didn’t just improve usability; it redefined mobility. Computing left the desktop and
followed users everywhere—in their pockets, in their cars, on their wrists. It opened the door to
ubiquitous, always-on computing, powered by interfaces designed for human gestures.

Touch was not just a new tool—it was a new language between humans and machines, paving
the way for even more immersive interaction paradigms like voice, augmented reality, and AI-
driven conversations.

1.4. Emergence of AI: Virtual Assistants and Chatbots

With the rise of artificial intelligence, a new type of interface has emerged—one that speaks,
listens, and understands. Virtual assistants and chatbots have transformed our interaction with
machines by introducing conversation as a user interface.

From simple rule-based bots to advanced systems powered by Large Language Models (LLMs),
these AI agents simulate human dialogue and adapt to natural language. Users no longer need to
learn the software. They can simply ask.

Assistants like Siri, Alexa, Google Assistant, and ChatGPT have made conversational interfaces
mainstream. Whether through voice or text, they help users perform tasks, answer questions, and
access services—often without ever touching a screen.

NICOLAS KORBOULEWSKY 7

This shift brings a new level of accessibility. It allows people of all backgrounds, ages, and abilities
to interact with technology in a more human and intuitive way. It also enables hands-free,
multitasking experiences—ideal for mobile, smart home, and embedded systems.

Behind the scenes, these AI systems combine pattern recognition, semantic analysis, and
decision logic to interpret intent and generate meaningful responses. The interaction becomes
less about commands and more about understanding goals and context.

This paradigm doesn’t replace traditional interfaces—it complements them. Voice and chat
become layers of intelligence embedded in applications, transforming user experience into a
more fluid and adaptive journey.

The emergence of AI-driven assistants marks a turning point: from user-driven input to
intelligent dialogue, where the machine becomes an active participant in the task, not just a tool.

NICOLAS KORBOULEWSKY 8

2. Evolution Towards a Neuro-Symbolic Paradigm
2.1. Limitations of Traditional Application Architectures
Traditional software architectures—whether desktop, web, or mobile—have long relied on a rigid
separation of concerns: interface, logic, and data. While this layered design (often realized
through paradigms like MVC) brought order and scalability, it also introduced inflexibility in the
face of today's AI-driven demands.

These architectures are fundamentally static. They are built to execute predefined behaviors,
triggered by explicit user actions. As a result, they lack the adaptability and learning capacity
needed to deal with ambiguous, natural, or evolving user inputs.

Moreover, most conventional applications require manual UI design, hard-coded logic, and
explicit data processing flows. This makes them difficult to adapt in real time to new contexts or
user intentions. Changes require redeployment, code rewriting, or complex update cycles.

Another limitation is their reliance on deterministic control structures. While predictable, this
makes it difficult to handle uncertainty, probabilities, or fuzzy inputs—common in human
language, perception, and decision-making. In this context, Large Language Models (LLMs) and
symbolic reasoning engines struggle to integrate seamlessly with these legacy systems.

Lastly, traditional applications operate as closed loops. They cannot autonomously evolve their
logic, modify their interface dynamically, or infer new behaviors from examples. They are tools—
powerful, but passive. They act on commands rather than engaging in intelligent, goal-driven
interactions.

To unlock the full potential of AI, a new kind of architecture is required—one where learning,
reasoning, interface generation, and conversation are unified into a single, dynamic system.
This is the promise of neuro-symbolic applications.

2.2. Integration of Semantic Understanding and Computation
One of the most transformative shifts in modern software architecture is the convergence of
semantic understanding and computational logic. This integration marks a departure from the
traditional separation between "what the user says" and "what the system does".

Historically, user input—whether typed or spoken—had to be parsed, interpreted, and
converted into structured commands before being processed by the system. This bridge between
language and logic was fragile, often requiring handcrafted rules, static grammars, or limited
keyword recognition.

With the advent of Large Language Models (LLMs), semantic understanding has reached a new
level. These models can interpret nuanced, ambiguous, or context-rich language, making them
capable of extracting user intent with impressive precision. However, semantic understanding
alone is not enough. It must be paired with a system that can execute structured, deterministic
actions.

This is where neuro-symbolic architectures shine: they bind natural language understanding
with executable knowledge. In these systems, language is not just a front-end interface—it
becomes an input to a computational engine that can reason, decide, and act.

NICOLAS KORBOULEWSKY 9

To make this integration effective, the computational layer must be homoiconic—where code
and data share the same structure. This allows semantic outputs from an LLM to be transformed
directly into executable graphs, logic flows, or data structures. In VAILS, this is achieved
through the VVL language, which enables AI to both understand and generate its own
programmatic representation in real-time.

As a result, applications built on this model are not only responsive—they are self-modifying,
adaptive, and aware of meaning. They can translate abstract instructions like “create a form for
user feedback” into a functional interface and logic—without manual programming.

This fusion of semantics and computation blurs the line between conversation and code, opening
the door to a new generation of software that thinks with you, learns from you, and builds for
you.

Example: From Natural Language to Executable VVL Code

Let’s consider the following user input:

“Show me apartments with 4 bedrooms.”

In a traditional system, this request would require parsing, routing, database query construction,
and UI integration—all manually coded. But in a neuro-symbolic architecture using VVL, the
system can directly generate and execute the required behavior from this sentence.

2.3. Shift from Pattern Recognition to Goal-Oriented Systems
For years, artificial intelligence systems have been primarily driven by pattern recognition.
Models like neural networks and transformers excel at identifying relationships, classifying inputs,
and generating coherent outputs based on vast datasets. However, while powerful, these systems
typically operate without a clear understanding of goals or intentionality.

NICOLAS KORBOULEWSKY 10

Pattern recognition alone is reactive. It enables machines to detect what has happened or predict
what might happen—but not to reason about why it happened or what should happen next. These
models lack the ability to pursue objectives, track progress toward them, or adapt strategies
based on contextual reasoning.

This is where goal-oriented systems represent a fundamental shift.

In goal-oriented architectures—like those supported by the VAILS framework—AI is not just a
passive observer; it
becomes an active agent,
capable of setting,

maintaining, and
achieving goals. These
systems integrate graph-
based control flows,
logical reasoning, and
semantic understanding,
allowing AI to make decisions
and execute plans
based on explicit objectives
rather than just learned

associations.

Using VAILS, an AI agent
doesn't simply recognize
a query about

“apartments with
4 bedrooms”; it

understands the
user's goal (finding a
property), maps it to a function (SearchProperties), and actively constructs an executable
representation of that goal in VVL. The system reasons with its context, dynamically adapts its
behavior, and can even restructure its own logic to better align with the user’s intent.

This shift enables a new generation of applications where AI acts with purpose, not just pattern. It
allows developers to build systems that are adaptive, interpretable, and interactive—capable
of both understanding language and executing meaningful, goal-directed tasks.

Ultimately, transitioning from pattern recognition to goal-oriented design is not just an
enhancement—it's a redefinition of what AI applications can do. It bridges the gap between
knowing and doing, enabling the creation of truly intelligent systems.

NICOLAS KORBOULEWSKY 11

3. Necessity of Homoiconicity and the VVL Language
As AI systems grow in complexity, the need for seamless interaction between language models
and computational logic becomes increasingly critical. Traditional programming languages
often impose a rigid distinction between code and data, making it difficult to dynamically generate
or modify behavior based on natural language inputs. This structural limitation creates a
bottleneck for integrating powerful semantic models like LLMs into live, responsive applications.

To overcome this, we must adopt a language that is not only expressive, but structurally
compatible with the way LLMs think and output information.

This is where homoiconicity becomes essential.

A homoiconic language treats code and data as having the same format—allowing programs to
manipulate themselves as easily as they manipulate any other data. This property creates a
powerful isomorphism between what an AI understands and what it can execute. It allows natural
language to be directly mapped into executable instructions without losing structure, meaning,
or control.

Enter VVL (VAILS Virtual Language)—a list-based, homoiconic language designed specifically
for neuro-symbolic AI. Inspired by Lisp but tailored for integration with LLMs and symbolic
engines, VVL provides the foundation for building goal-oriented, adaptive, and semantically
aware applications.

In this section, we explore why homoiconicity matters, how VVL implements it, and why it is the
cornerstone of a new generation of AI-native software development.

3.1. From Natural Language to Executable Code
One of the most revolutionary capabilities of modern AI systems lies in their ability to understand
human language. Yet, understanding is only the beginning. In intelligent applications, that
understanding must be converted into actionable logic—into executable code. This process,
which bridges the gap between human intent and machine behavior, is what enables a system to
move from being a passive interface to becoming an active collaborator.

Language as a Computational Input

Natural language is inherently ambiguous, contextual, and fluid. Traditional programming
environments are the opposite—they demand strict syntax, explicit structure, and deterministic
behavior. To transform one into the other, a system must be able to interpret the meaning behind
the words and restructure it into a well-formed, executable command.

This is where VVL (VAILS Virtual Language) plays a central role.

VVL is a homoiconic, list-based language designed to accept structured data that originates
from language models and convert it directly into executable application logic. Its nested
structure mirrors both semantic representations and computational flows, making it ideal for
neuro-symbolic reasoning.

NICOLAS KORBOULEWSKY 12

3.2. The Importance of Homoiconicity in AI Systems
1. Definition of the Property

A homoiconic language is one in which a program’s primary data structure is identical (or
isomorphic) to the representation of its own code. Formally, let

where S is the set of syntactic constructs and E the set of executable objects.
Homoiconicity implies an isomorphism

making every syntactic element manipulable at run-time as an ordinary data value.

2. Non-homoiconic Languages: Structural Separation

Most mainstream languages—Java, C++, Python, TypeScript—violate this isomorphism:

LAYER REPRESENTATION MANIPULABILITY AT RUN-TIME

SOURCE Context-free grammar (tokens →
AST)

Only via external tooling (compiler, parser,
reflection)

DATA Primitive & user-defined types Fully mutable within the VM

Consequences

1. Two disjoint ontologies

o Source code is compiled/interpreted once; data is manipulated thereafter.

2. Bridging overhead

o Dynamic code generation needs meta-programming, string templates, or
reflection APIs.

3. Opaque AI integration

o A language model (LM) must output either:
a) textual snippets that a developer pastes into source, or
b) serialized data that is then manually translated into control flow.

o Both paths introduce latency, security risks, and human-in-the-loop friction.

3. VVL: A Homoiconic List-Based Language

VVL (VAILS Virtual Language) extends the Lisp family’s homoiconicity with domain-specific
keywords (FIRST, CHAT, sub, etc.) tailored for AI agents.

NICOLAS KORBOULEWSKY 13

Every program is a nested list:

1

2

3

4

5

[FIRST 'db'

 ['SearchProperties'

 [LLM $__promptAnalyse $__query]

]

]

In this example we can clearly see the smooth integration of the LLM into the program stream. In
this case the LLM will convert the NLP query into a VVL syntax that can directly be used in the
program.

$__query = "I want an apartment with 4 bedrooms"

[LLM $__promptAnalyse $__query] => [["beds" "4"]]

Then after evaluation the program is evaluated like :

1

2

3

4

5

[FIRST 'db'

 ['SearchProperties'

 [["beds" "4"]]

]

]

It’s clear here the interest that the structure of the function [LLM …] is equivalent to the
structure of the data [["beds" "4"]]

• The outer list is executable: evaluated by the VVL interpreter.

• The inner lists are data structures: accessible, transformable, and serializable in exactly
the same form.

Isomorphism holds by construction: ϕ is the identity on lists.

4. Computational Implications

Criterion Non-homoiconic stack VVL (homoiconic)

Run-time code
synthesis

Requires AST builders, JIT, or
eval on strings

Simple list construction; no parsing
overhead

LLM output
consumption

LM → string → parse → execute LM → list → execute (direct)

Self-modifying
behavior

Hard (security & tool-chain
limits)

Native: functions manipulate lists that
are code

Debug/trace
Separate views: data vs.
compiled bytecode

Unified view: data = code; graph
inspection is trivial

Safety guarantees
Depends on sandboxing &
reflection controls

Structural validation before evaluation
(list length, keywords)

Latency Parse + compile + link Serialize + eval

NICOLAS KORBOULEWSKY 14

5. Scientific Rationale for Neuro-Symbolic AI

1. Semantic Alignment

• LLMs produce tree- or list-like token structures internally (attention maps ≈ parse trees).
Returning nested lists maintains that structure instead of flattening it into surface
strings.

2. Compositional Generalization

• Symbolic reasoning engines (e.g., miniKanren, Prolog) require first-class representations
of rules. Homoiconicity allows VVL rules to be generated, inspected, and executed
uniformly.

3. Gradient of Adaptation

• Because code is data, incremental fine-tuning of agent behavior can occur in-situ
(reinforcement via graph rewrites) rather than through costly retraining of the underlying
LLM.

4. Cognitive Interpretability

• Researchers can trace decision paths as list transformations, providing a transparent
bridge between sub-symbolic embeddings and symbolic execution—an essential
property for explainable AI (XAI).

6. Conclusion

Homoiconicity is not a syntactic curiosity; it is a computational catalyst that collapses the
boundary between thought (model output) and action (program execution).

By adopting VVL’s homoiconic paradigm, AI systems gain:

• Direct executability of natural-language-derived structures

• Real-time self-modification without external compilers

• Reduced latency and simplified security auditing

• A fertile substrate for neuro-symbolic integration and explainability

In short, homoiconicity transforms AI code generation from a fragile string-templating exercise
into a principled, mathematically grounded process—turning every sentence into a first-class
program and every program into inspectable data.

NICOLAS KORBOULEWSKY 15

…

